8 research outputs found

    Towards Zero-Waste Furniture Design

    Get PDF
    In traditional design, shapes are first conceived, and then fabricated. While this decoupling simplifies the design process, it can result in inefficient material usage, especially where off-cut pieces are hard to reuse. The designer, in absence of explicit feedback on material usage remains helpless to effectively adapt the design -- even though design variabilities exist. In this paper, we investigate {\em waste minimizing furniture design} wherein based on the current design, the user is presented with design variations that result in more effective usage of materials. Technically, we dynamically analyze material space layout to determine {\em which} parts to change and {\em how}, while maintaining original design intent specified in the form of design constraints. We evaluate the approach on simple and complex furniture design scenarios, and demonstrate effective material usage that is difficult, if not impossible, to achieve without computational support

    3D Fabrication of 2D Mechanisms

    Get PDF
    International audienceThe success of physics sandbox applications and physics-based puzzle games is a strong indication that casualusers and hobbyists enjoy designing mechanisms, for educational or entertainment purposes. In these applications,a variety of mechanisms are designed by assembling two-dimensional shapes, creating gears, cranks, cams, andracks. The experience is made enjoyable by the fact that the user does not need to worry about the intricategeometric details that would be necessary to produce a real mechanism.In this paper, we propose to start from such casual designs of mechanisms and turn them into a 3D model that canbe printed onto widely available, inexpensive filament based 3D printers. Our intent is to empower the users ofsuch tools with the ability to physically realize their mechanisms and see them operate in the real world.To achieve this goal we tackle several challenges. The input 2D mechanism allows for some parts to overlap duringsimulation. These overlapping parts have to be resolved into non–intersecting 3D parts in the real mechanism.We introduce a novel scheme based on the idea of including moving parts into one another whenever possible.This reduces bending stresses on axles compared to previous methods. Our approach supports sliding parts andarbitrarily shaped mechanical parts in the 2D input. The exact 3D shape of the parts is inferred from the 2D inputand the simulation of the mechanism, using boolean operations between shapes. The input mechanism is oftensimply attached to the background. We automatically synthesize a chassis by formulating a topology optimizationproblem, taking into account the stresses exerted by the mechanism on the chassis through time

    Extrusion-Based Ceramics Printing with Strictly-Continuous Deposition

    Get PDF
    International audienceWe propose a method for integrated tool path planning and support structuregeneration tailored to the specific constraints of extrusion-based ceramicsprinting. Existing path generation methods for thermoplastic materials relyon transfer moves to navigate between different print paths in a given layer.However, when printing with clay, these transfer moves can lead to severeartifacts and failure. Our method eliminates transfer moves altogether bygenerating deposition paths that are continuous within and across layers.Our algorithm is implemented as a sequential top-down pass through thelayer stack. In each layer, we detect points that require support, connectsupport points and model paths, and optimize the shape of the resultingcontinuous path with respect to length, smoothness, and distance to themodel. For each of these subproblems, we propose dedicated solutions thattake into account the fabrication constraints imposed by printable clay.We evaluate our method on a set of examples with multiple disconnectedcomponents and challenging support requirements. Comparisons to existingpath generation methods designed for thermoplastic materials show that ourmethod substantially improves print quality and often makes the differencebetween success and failure

    Synthèse de formes fabricables à partir de spécifications partielles

    No full text
    The Rapid Manufacturing techniques that emerged from Rapid Prototyping techniques such as 3D printing or laser cutting allow to fabricate unique objects. However, the design of those objects with existing CAD software remain a difficult task: rapid prototyping processes impose constraints on the geometry of the model. This thesis presents a set of techniques that assist the user in the design of an object by taking into account the constraints of the fabrication process. To achieve this, the algorithm automatically performs part of the modelling process. The following problems have been tackled: First, I propose to improve the quality of 3D printed objects by minimizing defects that appear during the fabrication. The technique developed impacts only the algorithm that drives the printer. Then, I propose to help the user to take into account the fabrication constraints during the modelling process. My techniques rely on partial information about the shape that the user wants to fabricate like the 2D sketch of a mechanism or a parametric model of a furniture. The algorithm optimizes the initial shape to improve fabrication objectives(Wastage, etc.) Finally, in some cases, the user does not know how to operate dedicated software. In this case, I propose a synthesis technique of furniture from functionnal specification, e.g. loads that have to be supported in spaceLes techniques de fabrication rapide, issues des techniques de prototypage rapide comme l’impression 3D ou la découpe laser permettent de fabriquer des pièces uniques sans demander d’expertise particulière du procédé mis en œuvre. En revanche la modélisation de nouveaux objets tout comme la personnalisation d’objets existants restent difficiles. En effet, les techniques de prototypages rapides imposent des contraintes sur la géométrie du modèle qui doivent être respectées. Cette thèse présente un ensemble de techniques qui ont pour point commun d’assister l’utilisateur dans la modélisation d’un objet, en tenant compte des contraintes du procédé qui permettra de le fabriquer. À cette fin, l’algorithme prend en charge tout ou partie de la modélisation. En particulier, les problématiques suivantes sont abordées : Tout d’abord, je propose d’améliorer la qualité des objets fabriqués avec une imprimante 3D en minimisant certains défauts qui apparaissent lors de la fabrication. Les approches développées modifient uniquement les algorithmes de pilotage de l’imprimante. En second lieu, je propose d’aider l’utilisateur à prendre en compte les contraintes de fabrication pendant la modélisation. Mes techniques utilisent des informations partielles sur la forme que l’utilisateur souhaite fabriquer, comme le dessin en deux dimensions d’un mécanisme, ou un modèle paramétrique qui définit un meuble. L’algorithme optimise une forme finale qui améliore des critères liés à sa fabrication (gaspillage, encombrement, etc.). Enfin, dans certains cas (e.g. grand public) l’utilisateur n’est pas forcément à même de modéliser ces formes via des logiciels spécialisés. Pour ce cas précis, je propose une technique de synthèse de meubles à partir de spécifications fonctionnelles, e.g. la spécification de poids à porter dans l’espac

    Synthesis of fabricable shape from partial specifications

    No full text
    Les techniques de fabrication rapide, issues des techniques de prototypage rapide comme l’impression 3D ou la découpe laser permettent de fabriquer des pièces uniques sans demander d’expertise particulière du procédé mis en œuvre. En revanche la modélisation de nouveaux objets tout comme la personnalisation d’objets existants restent difficiles. En effet, les techniques de prototypages rapides imposent des contraintes sur la géométrie du modèle qui doivent être respectées. Cette thèse présente un ensemble de techniques qui ont pour point commun d’assister l’utilisateur dans la modélisation d’un objet, en tenant compte des contraintes du procédé qui permettra de le fabriquer. À cette fin, l’algorithme prend en charge tout ou partie de la modélisation. En particulier, les problématiques suivantes sont abordées : Tout d’abord, je propose d’améliorer la qualité des objets fabriqués avec une imprimante 3D en minimisant certains défauts qui apparaissent lors de la fabrication. Les approches développées modifient uniquement les algorithmes de pilotage de l’imprimante. En second lieu, je propose d’aider l’utilisateur à prendre en compte les contraintes de fabrication pendant la modélisation. Mes techniques utilisent des informations partielles sur la forme que l’utilisateur souhaite fabriquer, comme le dessin en deux dimensions d’un mécanisme, ou un modèle paramétrique qui définit un meuble. L’algorithme optimise une forme finale qui améliore des critères liés à sa fabrication (gaspillage, encombrement, etc.). Enfin, dans certains cas (e.g. grand public) l’utilisateur n’est pas forcément à même de modéliser ces formes via des logiciels spécialisés. Pour ce cas précis, je propose une technique de synthèse de meubles à partir de spécifications fonctionnelles, e.g. la spécification de poids à porter dans l’espaceThe Rapid Manufacturing techniques that emerged from Rapid Prototyping techniques such as 3D printing or laser cutting allow to fabricate unique objects. However, the design of those objects with existing CAD software remain a difficult task: rapid prototyping processes impose constraints on the geometry of the model. This thesis presents a set of techniques that assist the user in the design of an object by taking into account the constraints of the fabrication process. To achieve this, the algorithm automatically performs part of the modelling process. The following problems have been tackled: First, I propose to improve the quality of 3D printed objects by minimizing defects that appear during the fabrication. The technique developed impacts only the algorithm that drives the printer. Then, I propose to help the user to take into account the fabrication constraints during the modelling process. My techniques rely on partial information about the shape that the user wants to fabricate like the 2D sketch of a mechanism or a parametric model of a furniture. The algorithm optimizes the initial shape to improve fabrication objectives(Wastage, etc.) Finally, in some cases, the user does not know how to operate dedicated software. In this case, I propose a synthesis technique of furniture from functionnal specification, e.g. loads that have to be supported in spac

    Clean Colors

    No full text
    International audienceIn this work we consider the problem of tool path planning for low--cost FDM printers when using multiple filaments. Our method is based on three components which together reduce most of the defects found in such prints. Our algorithm first optimizes the orientation (azimuth angle) of the print so as to minimize defects. It then builds a rampart in close proximity of the model. This captures most of the strings of plastic oozing from idle extruders. Finally, we optimize for navigation paths minimizing the apparition of defects

    Bridging the Gap: Automated Steady Scaffoldings for 3D Printing

    Get PDF
    International audienceFused Filament Fabrication (FFF) is the process of 3D printing objects from melted plastic filament. The hot plastic exits a nozzle and fuses with the part just below, adding a layer of material to the object being formed. However, filament can only be deposited on top of an existing surface. Therefore, overhangs require a disposable support structure to be printed, temporarily supporting the threads of plastic that would otherwise hang in empty space.Existing techniques for support generation fall into two categories: The first allow for very reliable prints by enclosing the bottom of the object in a dense structure, at the expense of increased material usage and build times. The second generate thin hierarchical structures connecting to the surface in a sparse number of points. This uses less material, at the expense of reliability: the part might become unstable, the structure itself may become difficult to print, the bottom surface quality degrades. The user therefore has to correct the structure and its parameters for each new object.We propose to exploit the ability of FFF printers to print bridges across gaps. Since bridges are always supported by pillars at their extremities, they are both stronger and more stable than hierarchical tree structures. Our technique first selects the points to support based on overhang and part stability during the entire print process. It then optimizes for a printable scaffolding composed of bridges and vertical pillars, supporting all points. The result is an automated support generation technique using little material while ensuring fine surface quality and stability during the printing process

    Towards Zero-Waste Furniture Design

    No full text
    corecore